Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 13(1): 18207, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875508

ABSTRACT

Obtaining Plasmodium vivax sporozoites is essential for in vitro culture of liver stage parasites, not only to understand fundamental aspects of parasite biology, but also for drug and vaccine development. A major impediment to establish high-throughput in vitro P. vivax liver stage assays for drug development is obtaining sufficient numbers of sporozoites. To do so, female anopheline mosquitoes have to be fed on blood from P. vivax-infected patients through an artificial membrane-feeding system, which in turns requires a well-established Anopheles colony. In this study we established conditions to provide a robust supply of P. vivax sporozoites. Adding a combination of serum replacement and antibiotics to the membrane-feeding protocol was found to best improve sporozoite production. A simple centrifugation method appears to be a possible tool for rapidly obtaining purified sporozoites with a minimal loss of yield. However, this method needs to be better defined since sporozoite viability and hepatocyte infection were not evaluated.


Subject(s)
Anopheles , Malaria, Vivax , Animals , Humans , Female , Plasmodium vivax , Anopheles/parasitology , Malaria, Vivax/parasitology , Sporozoites , Hepatocytes
2.
Malar J ; 21(1): 144, 2022 May 08.
Article in English | MEDLINE | ID: mdl-35527254

ABSTRACT

BACKGROUND: Over a third of the world's population is at risk of Plasmodium vivax-induced malaria. The unique aspect of the parasite's biology and interactions with the human host make it harder to control and eliminate the disease. Glucose-6-phosphate dehydrogenase (G6PD) deficiency and Duffy-negative blood groups are two red blood cell (RBC) variations that can confer protection against malaria. METHODS: Molecular genotyping of G6PD and Duffy variants was performed in 225 unrelated patients (97 with uncomplicated and 128 with severe vivax malaria) recruited at a Reference Centre for Infectious Diseases in Manaus. G6PD and Duffy variants characterizations were performed using Real Time PCR (qPCR) and PCR-RFLP, respectively. RESULTS: The Duffy blood group system showed a phenotypic distribution Fy(a + b-) of 70 (31.1%), Fy(a + b +) 96 (42.7%), Fy(a-b +) 56 (24.9%) and Fy(a-b-) 1 (0.44%.) The genotype FY*A/FY*B was predominant in both uncomplicated (45.3%) and severe malaria (39.2%). Only one Duffy phenotype Fy(a-b) was found and this involved uncomplicated vivax malaria. The G6PD c.202G > A variant was found in 11 (4.88%) females and 18 (8.0%) males, while c.376A > G was found in 20 females (8.88%) and 23 (10.22%) male patients. When combined GATA mutated and c.202G > A and c.376A > G mutated, was observed at a lower frequency in uncomplicated (3.7%) in comparison to severe malaria (37.9%). The phenotype Fy(a-b +) (p = 0.022) with FY*B/FY*B (p = 0.015) genotype correlated with higher parasitaemia. CONCLUSIONS: A high prevalence of G6PD c202G > A and c.376A > G and Duffy variants is observed in Manaus, an endemic area for vivax malaria. In addition, this study reports for the first time the Duffy null phenotype Fy(a-b-) in the population of the Amazonas state. Moreover, it is understood that the relationship between G6PD and Duffy variants can modify clinical symptoms in malaria caused by P. vivax and this deserves to be further investigated and explored among this population.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Brazil/epidemiology , Duffy Blood-Group System/genetics , Female , Genotype , Glucosephosphate Dehydrogenase Deficiency/genetics , Humans , Malaria, Vivax/epidemiology , Male , Plasmodium vivax/genetics
3.
Front Physiol ; 13: 1080837, 2022.
Article in English | MEDLINE | ID: mdl-36601349

ABSTRACT

Patients infected by the SARS-CoV-2 virus are commonly diagnosed with threatening liver conditions associated with drug-induced therapies and systemic viral action. RNA-Seq data from cells in bronchoalveolar lavage fluid from COVID-19 patients have pointed out dysregulation of kallikrein-kinin and renin-angiotensin systems as a possible mechanism that triggers multi-organ damage away from the leading site of virus infection. Therefore, we measured the plasma concentration of biologically active peptides from the kallikrein-kinin system, bradykinin and des-Arg9-bradykinin, and liver expression of its proinflammatory axis, bradykinin 1 receptor (B1R). We measured the plasma concentration of bradykinin and des-Arg9-bradykinin of 20 virologically confirmed COVID-19 patients using a liquid chromatography-tandem mass spectrometry-based methodology. The expression of B1R was evaluated by immunohistochemistry from post-mortem liver specimens of 27 COVID-19 individuals. We found a significantly higher blood level of des-Arg9-bradykinin and a lower bradykinin concentration in patients with COVID-19 compared to a healthy, uninfected control group. We also observed increased B1R expression levels in hepatic tissues of patients with COVID-19 under all hepatic injuries analyzed (liver congestion, portal vein dilation, steatosis, and ischemic necrosis). Our data indicate that des-Arg9-bradykinin/B1R is associated with the acute hepatic dysfunction induced by the SARS-CoV-2 virus infection in the pathogenesis of COVID-19.

4.
Malar J ; 16(1): 107, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28270152

ABSTRACT

BACKGROUND: Considerable success in reducing malaria incidence and mortality has been achieved in Brazil, leading to discussions over the possibility of moving towards elimination. However, more than reporting and counting clinical cases, elimination will require the use of efficient tools and strategies for measuring transmission dynamics and detecting the infectious reservoir as the primary indicators of interest for surveillance and evaluation. Because acquisition and maintenance of anti-malarial antibodies depend on parasite exposure, seroprevalence rates could be used as a reliable tool for assessing malaria endemicity and an adjunct measure for monitoring transmission in a rapid and cost-effective manner. METHODS: This systematic review synthesizes the existing literature on seroprevalence of malaria in the Brazilian Amazon Basin. Different study designs (cross-sectional surveys and longitudinal studies) with reported serological results in well-defined Brazilian populations were considered. Medline (via PubMed), EMBASE and LILACS databases were screened and the articles were included per established selection criteria. Data extraction was performed by two authors and a modified critical appraisal tool was applied to assess the quality and completeness of cross-sectional studies regarding defined variables of interest. RESULTS: From 220 single records identified, 23 studies were included in this systematic review for the qualitative synthesis. Five studies reported serology results on Plasmodium falciparum, 14 papers assessed Plasmodium vivax and four articles reported results on both Plasmodium species. Considerable heterogeneity among the evaluated malarial antigens, including sporozoite and blood stage antigens, was observed. The majority of recent studies analysed IgG responses against P. vivax antigens reflecting the species distribution pattern in Brazil over the last decades. Most of the published papers were cross-sectional surveys (73.9%) and only six cohort studies were included in this review. Three studies pointed to an association between antibodies against circumsporozoite protein of both P. falciparum and P. vivax and malaria exposure. Furthermore, five out 13 cross-sectional studies evidenced a positive association between IgG antibodies to the conserved 19-kDa C-terminal region of the merozoite surface protein 1 of P. vivax (PvMSP119) and malaria exposure. CONCLUSIONS: This systematic review identifies potential biomarkers of P. falciparum and P. vivax exposure in areas with variable and unstable malaria transmission in Brazil. However, this study highlights the need for standardization of further studies to provide an ideal monitoring tool to evaluate trends in malaria transmission and the effectiveness of malaria intervention programmes in Brazil. Moreover, the score-based weighted tool developed and used in this study still requires further validation.


Subject(s)
Antibodies, Protozoan/blood , Biomarkers/blood , Malaria/epidemiology , Malaria/immunology , Brazil/epidemiology , Humans , Seroepidemiologic Studies
5.
Malar J ; 15(1): 559, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27852258

ABSTRACT

BACKGROUND: Antigenic polymorphisms are considered as one of the main strategies employed by malaria parasites to escape from the host immune responses after infections. Merozoite surface protein-1 (MSP-1) of Plasmodium vivax, a promising vaccine candidate, is a highly polymorphic protein whose immune recognition is not well understood. METHODS AND RESULTS: The IgG responses to conserved (MSP-119) and polymorphic (block 2 and block 10) epitopes of PvMSP-1 were evaluated in 141 P. vivax infected patients. Ten recombinant proteins corresponding to block 2 (variants BR07, BP29, BP39, BP30, BEL) and block 10 (BR07, BP29, BP39, BP01, BP13) often observed in Brazilian P. vivax isolates were assessed by ELISA in order to determine levels of specific antibodies and their respective seroprevalence. The magnitude and the frequency of variant-specific responses were very low, except for BR07 variant (>40%), which was the predominant haplotype as revealed by block 10 PvMSP-1 gene sequencing. By contrast, 89% of patients had IgG against the C-terminal conserved domain (PvMSP-119), confirming the high antigenicity of this protein. Using multiple linear and logistic regression models, there was evidence for a negative association between levels of haemoglobin and several IgG antibodies against block 2 variant antigens, with the strongest association being observed for BP39 allelic version. This variant was also found to increase the odds of anaemia in these patients. CONCLUSIONS: These findings may have implications for vaccine development and represent an important step towards a better understanding of the polymorphic PvMSP-1 domain as potential targets of vaccine development. These data highlight the importance of extending the study of these polymorphic epitopes of PvMSP-1 to different epidemiological settings.


Subject(s)
Alleles , Antibodies, Protozoan/blood , Epitopes/immunology , Hemoglobins/analysis , Malaria, Vivax/immunology , Merozoite Surface Protein 1/immunology , Plasmodium vivax/immunology , Adult , Enzyme-Linked Immunosorbent Assay , Epitopes/genetics , Female , Humans , Immunoglobulin G/blood , Malaria, Vivax/epidemiology , Male , Merozoite Surface Protein 1/genetics , Middle Aged , Plasmodium vivax/genetics , Seroepidemiologic Studies
6.
PLoS One ; 8(2): e57014, 2013.
Article in English | MEDLINE | ID: mdl-23441231

ABSTRACT

Malaria affects millions of people worldwide and hundreds of thousands of people each year in Brazil. The mosquito Anopheles aquasalis is an important vector of Plasmodium vivax, the main human malaria parasite in the Americas. Reactive oxygen species (ROS) have been shown to have a role in insect innate immune responses as a potent pathogen-killing agent. We investigated the mechanisms of free radicals modulation after A. aquasalis infection with P. vivax. ROS metabolism was evaluated in the vector by studying expression and activity of three key detoxification enzymes, one catalase and two superoxide dismutases (SOD3A and SOD3B). Also, the involvement of free radicals in the mosquito immunity was measured by silencing the catalase gene followed by infection of A. aquasalis with P. vivax. Catalase, SOD3A and SOD3B expression in whole A. aquasalis were at the same levels of controls at 24 h and upregulated 36 h after ingestion of blood containing P. vivax. However, in the insect isolated midgut, the mRNA for these enzymes was not regulated by P. vivax infection, while catalase activity was reduced 24 h after the infectious meal. RNAi-mediated silencing of catalase reduced enzyme activity in the midgut, resulted in increased P. vivax infection and prevalence, and decreased bacterial load in the mosquito midgut. Our findings suggest that the interactions between A. aquasalis and P. vivax do not follow the model of ROS-induced parasite killing. It appears that P. vivax manipulates the mosquito detoxification system in order to allow its own development. This can be an indirect effect of fewer competitive bacteria present in the mosquito midgut caused by the increase of ROS after catalase silencing. These findings provide novel information on unique aspects of the main malaria parasite in the Americas interaction with one of its natural vectors.


Subject(s)
Anopheles/metabolism , Anopheles/parasitology , Plasmodium vivax/physiology , Reactive Oxygen Species/metabolism , Amino Acid Sequence , Animals , Anopheles/genetics , Catalase/genetics , Catalase/metabolism , Disease Susceptibility , Enzyme Activation , Female , Gene Silencing , Humans , Male , Molecular Sequence Data , Phylogeny , Sequence Alignment , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Transcription, Genetic
7.
Am J Trop Med Hyg ; 85(3): 524-7, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21896816

ABSTRACT

American tegumentary leishmaniasis (ATL) and human immunodeficiency virus (HIV) are both common infectious diseases in the Brazilian Amazon with overlapping expansion areas, which leads to the occurrence of Leishmania/HIV coinfection. Most ATL/HIV-acquired immunodeficiency syndrome (AIDS) association cases have been reported from areas where Leishmania (Viannia) braziliensis is the main pathogen; this finding is in contrast with the Amazon region, where L. (V.) guyanensis is the most implicated agent, implying distinct clinical and therapeutic aspects. We describe 15 cases of ATL/HIV coinfection treated in a tertiary care center in the Brazilian Amazon between 1999 and 2008. Thirteen patients presented with diverse clinical manifestations of cutaneous leishmaniasis, and four of them had disseminated forms; two patients presented with mucosal leishmaniasis (ML). Seven patients required more than one course of treatment. The particularities of ATL/HIV-AIDS association in L. (V.) guyanensis-endemic areas require efforts for an increased understanding of its burden and subsequent improvements in case management.


Subject(s)
AIDS-Related Opportunistic Infections/epidemiology , HIV Infections/complications , Leishmaniasis, Cutaneous/complications , Adult , Brazil/epidemiology , Female , HIV Infections/epidemiology , Humans , Leishmaniasis, Cutaneous/epidemiology , Male , Middle Aged , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...